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We investigate dispersion and group velocity relations of numerical
schemes for the three-dimensional hydrodynamic equations by using
the transform function method. The numerical methods are developed
for two of Arakawa's spatial grid types, namely B grid and C grid, using
a spectral method in the vertical direction. One of our results is that if
the horizontal scale length is greater than the Rossby radius of deforma-
tion then the B grid is more appropriate than the commaonly used C
grid.  '© 1993 Academic Press. Inc.

L AINTRODUCTION

Within the area of occanographic flows, the early numert-
cal models were for the two-dimenstonal hydrodynamic
cguations in which (he current structure was removed by
intcgrating through the vertical from the sea surlace to the
sea bed, obtaining what arc called the shallow water equa-
tions. These models were primarily used to study changes in
an elevation due to tides and meteorological events (storm
surge models). A varicty of computational methods have
been developed to obtain numerical solutions of these
cquations (sce, e.g., [1.2,81).

In recent years there has been considerable interest in
developing full three-dimensional flow models, since more
‘detailed information on the current is required in practice
{see, cg., [10,11,14-16]). ¥For cxampie, the surface
velocity determines the motion of an oil slick and for a
wind-driven flow, for instance, the surface velocity differs
very much [rom the depth-averaged Now.,

In solving the hydrodynamic modcel cquations numeri-
cally, the numerical ¢rrors not only come from the trunca-
tion error hut also from the numerical dispersion. In order
to oblain accurate numerical solutions, we need Lo con-
struct high order schemes with low numerical dispersion
{see, c.g., [20, 25, 26)). The main purpose of this work is to
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investigate the behaviors of the numerical dispersion and
group velocity for some widely used hybrid schemes in
solving three-dimensional hydrodynamic equations.

In general, there are five numerical grids, usually refered
to as A-E grids, which are oblained by appropriate
arrangements of the dependent variables in the horizontal
directions {see, e.g., [1,2] and Fig. 1). In the one-dimen-
sional case, Winningho!ff [29] and Schoenstadt [23]
carried out extensive investigations of geostrophic adjust-
ment for these five schemes. Their analysis suggests that the
B prid is the most satislactory one for one-dimensional
modeis.

Arakawa and Lamb [ 1] studied the applications of the
A-E grids for two-dimensional models. They found that, in
contrast to the onc-dimensional case, the C grid is the best
one among the five schemes when they are employed in the
two-dimensional caiculations. Since then the C grid (some-
times called the Arakawa C grid) has been used extensively
in practical calculations, starting with the two-dimensional
algorithms [6, 9, 19] down to the more recent three-dimen-
sional algorithms [3, 13, 15, 16] and including the algo-
rithms based on the spectral method in the vertical direction
[4, 5, 10, 11, 12]. However, Jamart and Ozer [12] found
that the C grid might iead to spurious numerical boundary
layers if the spectral method is used in the vertical direction
unless the Coriolis terms are treated specially on the bound-
aries. Since the two horizontal velocity components are
computed at different spatial points with a C grid, it is
necessary to average the Coriolis term in cach momentum
equation over the four neighboring points at which the
opposite velocity component is computed, Adjacent to a
coast, onc or more of these four points will actually lie on
the coast, and the velocity components at such points arc
maintained at zero by the usual algorithms, The result is
that the four-point average gives an incorrect value for the
interior point, and this lcads to spurious velocities near the
coast. in order to handle this problem Song [ 24 ] compared
the A-E grids by solving a model probiem for which the
exact solution can be found analytically. The numerical
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results suggest that the B grid provides a viable alternative
to the C grid, with significant advantages when the spectral
method is employed.

To have a better understanding of the B and C grids
in three-dimensional calculations, a general analysis is
required under certain theoretical frameworks. The transfer
function approach introduced by Schoenstadt {227 has
been used to study the behavior of the semi-discrete shallow
water equations which are solved by the finite-difference
method [22, 237, the finite-clement method [287], and the
Turkel-Zwas scheme [21]. As a useful tool in analyzing
numerical schemes, the transfer function approach leads to
important insights into the behavior of the discretization
scheme in terms of comparison between continuous and dis-
crete amplitude, phase, and group velocity coefficients. In
this work we shall apply the transfer function approach to
a mixed finite-difference spectral method for the numerical
solutions of the three-dimensional hydrodynamic equa-
tions. In Section 2 of this paper, we introduce the mathe-
matical equations which are to be solved numerically. In
Section 3 the numerical discretization is presented. In
Section 4 the numerical schemes are transformed into the
phase space and the dispersion relations are solved. Finally,
in Section 5 the numerical results of the transfer function
analysis for the numerical schemes are compared to those of
the transfer function analysis for the differential modei.

2. BASIC EQUATIONS

We use xpz as Cartesian coordinates with the z-axis
pointing vertically upwards and the xp-plane occupying
the undisturbed water surface. The horizontal momentum
equations and the integrated equation of continuity for
a homogeneous sea, including the nonlinear terms but
neglecting shear in the horizontal direction and the direct
influence of tide generating forces, may be written as
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where u=u(x, y, z, tV and v = v(x, y, z, ¢} are the horizontal
velocity components in x and y directions, respectively,

w=w(x, y, z) is the vertical velocity component, = k(x, y)
is the water depth, {={(x, y, #) is the surface clevation,
N=N(x,y 2z 1} is the vertical eddy viscosity, f is the
Coriolis parameter, and g is the acceleration due to gravity.
It is required to solve Eqgs.(2.1)-(2.3), subject to the
boundary conditions on the sea surface and at the sea bed.
The surface conditions, evaluated at z =, are
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where p is the fluid density and 7, and t, are the com-
ponents of wind stress acting on the free surface in the x and
y directions, respectively. Correspondingly, at the sea bed,
z= —h, the boundary conditions are

d
Na—f=(K1+K2,/u2+uz)u,

i,
Na—u=(x1+;c2./u2+vz)v,
Z

(2.5)

where x, and k, are the coefficients of the linear and
quadratic bottom friction, respectively.

In this work we shall concentrate on the linearized form
of Egs. (2.1)}-(2.3). It is convenient to use the so-called
sigma coordinate which 1s defined by o =(z + #)/H, where
H = h + { is the total water depth. Using this transform and
approximating H by ki (note that { is very small in
comparison with H), we obtain the linear counterpart of
Egs. (2.1)-(2.3),

Bu o o/ du

- _ o pm? el .
FPREARR P aa(Naa)’ (2:8)
v o 8 [ ov

= LY — .
ot ey, P (N aa)’ (2.7)

oL 8 1 i) ! _
E+a(hjoud6)+a(h£)vda)—0. (238)

The wind stress in (2.4) will be set equal to zero since the
linear boundary conditions can be easily transformed to
zero (see [17]). The bottom condition (2.5) is usually
calculated explicitly in time (e.g, [16, 18]). It can also be
simply set equal to zero (e.g., [7]). This simplicity allows
using the vertical spectral method to decouple the
barotropic component (depth-averaged flow)} from the
baroclinic components (vertical perturbation flow) and
reduces the numerical difficulty. Since the friction coef-
ficients are very small in practice, accurate numerical
solutions can still be obtained under this assumption.
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If we ignore the wind force on the surface and the bottom
friction, then the boundary conditions become

ou s @

do do 0. (29)

c=0, o= 1.

3. HYBRID NUMERICAL SCHEMES

3.1. Spectral Method in the Vertical Direction

The fundamental idea of the spectral method for the dis-
cretization in the vertical direction is to expand the velocity
components in terms of an appropriate set of basis
functions. Following [10, 11,17, 18], we consider the
Sturm-Liouville problem

& (v5)-re=0

on =40,

(3.1)

g=1. (3.2)

For ease of our theoretical analysis, we assume that the ver-
tical eddy viscosity N depends only on ¢ throughout of this
paper, i.e., N = N{a). Under this assumption, the eigenpairs
can be denoted by {4,, ¢,(¢):j=0, 1, ...}, where the lowest

gigenpair i i,=0, ¢o=1. The eigenfunctions are nor-
malized such that

izl

[ 401 do=1,
(]

The eigenfunctions then form an orthonormal system, and
in particular, orthogonality with ¢, implies that

j' #,(6) do =0,
0

Jj=1L

We now expand the velocity components in terms of the
eigenfunctions:
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Multiplying Egs. (2.6) and (2.7) by ¢,(c) and integrating the
resulting equations with the boundary COHdlthI‘lS (2.9), we
obtain the system for the modal amplitudes,

5{ d
2 thag) 5 () =0,
dag o

6{ __ﬁ’0+ gax_o’

&b, i,
a—+fa0+g—£=0
T+ota —fh;=0, j=1,
ob,

a—;+a,bj+fq,.=0, izl

where o, =(4;/h)>. Further, the transformations p = ha,,
q=hby, A = ahexp(a;t), and B, = bk exp(x,f) lead 1o
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It should be pointed out that Eqs. (3.4}-(3.6) are the two-
dimensional shallow water equations which have been con-
sidered by Arakawa and Lamb [1, 2]. In fact, these threc
equations can be obtained by integrating (2.6)-(2.8) from
the sea surface to the sea bed in the vertical direction. They
represent the depth-averaged flow while Egs. (3.7) and (3.8)
represent the vertical perturbation flow. In practical calcula-
tions, Eqgs.(3.4)-(3.8) are coupled with some nonlinear
terms, such as the advection terms and the bottom frictions.
However, these nonlinear terms are always treated explicitly
and for ease of the theoretical analysis they are set equal
to zero. Since the three-dimensional flow consists the
depth-averaged flow and the vertical perturbation flow,
Eqgs. (3.4)-(3.8) should be treated as a system of equations
in the analysis. Equations (3.4)-(3.8) will be solved subject
to the initial conditions

] 1
p=hjouoda, q=h[0voda, {=(y =0,

1
A, —hJ ug; do, B_,-=hJ‘0 vy, do, =0, j=1,
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where u and vy are the initial velocity componentis in the x
and y directions, respectively, and (, is the initial water
elevation.

3.2, Finite Difference Schemes

In order to obtain semi-discretized schemes for
Eqs. (3.4}-(3.8), we need to consider the discretizations in
the horizontal direction. Consider the five distributions of
the dependent variables &, u, and v, on a square grid
illustrated in Fig. |. As mentioned in Section 1, there are
five space grids which are of second order for the corre-
spondingly labeled distribution [1, pp. 181-1827. As dis-
cussed in the Introduction we shall concentrate on the
analysis for the B and C grids in the present work. The
semi-discretized forms for Eqgs. (3.4)-(3.8) corresponding to
the B grid and the C grid ar¢ given as
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FIG. 1. The five different locations of the horizontal velocity com-
ponents. {-points are indicated by O, u-points by —, and v-potnts by |.

and where m and # are the indices of the grid points in the
x and y directions, respectively, d is the grid size in both
x and y directions. The symbols (6,7}, and ("), are
defined in a similar manner, but with respect to the y
direction, and

(,)-)—.U‘)mn = %('ym +1/2.n + Vo — 1/2,n

F Vot 172 F Vomon— 172 )- (3.21)

4. PHASE TRANSFORMATIONS

In this section we use the Fourier transfer function
approach, which is proved to be suitable for use in a
comparison of the differential and difference formulations
(see [21-231), to study the semi-discretized schemes
{3.9)-(3.13) and (3.14)(3.18). For the continuous form,
the Fourier transform is

. +oo
Ak, 1, = f Alx, y, 1) exp(—ilkx + Iy)} dx dy,

—ox

(4.1)
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By use of (4.1), Eqgs. {3.4)-(3.8) become
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where we have denoted the Fourier transforms by an
overlying hat.

The spectral method of order J is the result of solving the
ﬁrst Jof Eqs (4.2)-(4. 6) for the 2J+ 1 unknowns C, b, 4, 4,,
B,, 4,, B,, .., after 4, , and B,_, have been set equal
to 0 in the last of these equations. Let F denote a
(2J + 1)-dimensional column vector defined by

F [5 p!quI,Bh"' J— l!BJ l]T'
Then Egs. (4.2)-{4.6) lead to
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where M is a {2J 4+ 1) x (2J 4+ 1) matrix given by

0 & i 0 0 0
kgh 0 —f 0 0 0
idgh £ 0 0 0 - 0
M= 0 0 0 0 —f .- 0
0 0 0 f 0
) Ly
0 0 0 0 f o

Similarly, we can obtain from (3.9)-(3.13) that
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where the matrix M ,, which corresponds to the B grid, is of
the form
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Further, we seek for the fieid variable solutions with real
wave numbers k, / and complex frequency w(k, {}. Namely,
let

F =exp(iot)[{y, 5% ¢°, 4%, BY, .., A5_,, BS_\1".
Substituting (4.12) into (4.7), (4.8), and (4.10), and solving
the resulting determinants respectively, we obtain the
eigenvalues

(4.12)

Differential case,

0,20, (4.13)
wy,=1f =L -1, (4.14)
Wi, = £ SF7+ ghk2+ 1), (4.15)
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B grid The analysis above suggests that if discretized schemes are
used then the wave numbers and the Coriolis term will be
we=10, (4.16) replaced by some corresponding approximations, These
Wy= S j= T, (4.17) approximations are listed in the following table:
wi=1 S+ ghlo* + ﬁzk (4.18) x-direction p-direction Coriolis term
Dilferential case k I !
Py B grid 2 i S/
C grid, Cgrid a b Rf
woe=10, (4.19)
5. NUMERICAL RESULTS
=+ /R i=1,..,J—1, 4.20 . . .
Wy =L/ ; / ( ) Before presenting the numerical results, we introduce
w =+ (R + ghla® + b). (4.21) some physical parameters which will be used below. The
1.0
A
o
=S B.5
*
—
2.9

1.0
C
5
S 8.5
*
—

e.o

KxD/P1

FIG. 2. Contours of the dispersion relations for the differential case, the B and C grids, plotted for A/d=2: (a) 1.6 to 8.8, interval 0.4; (b} L.l to 4.1,
interval 0.1; (c) 1.2 to 5.6, interval 0.2.
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Rossby radius of deformation is basically the horizontal 5.). Dispersion Analysis

scale at which rotation effects become as important as

buoyancy in the rotating fluid of ocean or atmosphere., The Dispersion is the interference of Fourier modes that
Rossby radius of deformation is defined as 4 = \/g—h/ 'f with  comes about if the waves numbers k and / and the frequency
g the acceleration of gravity and & the depth of the fluid. o are related nonlinearly. In general, the dispersion relation
Wave numbers in the x and y directions, k and /, are defined  for a partial differential equation is a polynomial of k and /,
in the region (k, ) e (—n/d, n/d) x (—n/d, =/d) with d the while a discret¢ model amounts to a trigonometric
spatial grid size. The ratio of Rossby radius of deformation  approximation. [t has been noted that even if the von
/. and the scale length d, r = A/d, plays an important role in  Neuman condition is satisfied, numerical schemes may be
the present problem. Since the Rossby radius of deforma-  unstable due to the dispersion {see, e.g., [25, 26]). There-
tion is fixed, a large ratio corresponds to a small scale length  fore it is necessary to construct numerical schemes with

while a small ratio corresponds to a large scale length.. lower dispersion.
1.8 1.8
A B
= o
oé, 2.5 S 2.5
* *
| —
2.0 9.0
0.2 9.5 1.9 .8
KxD/P1 KxD/P1
1.0
C
2
N
S o r
*
o |

2.9 2.5 1.9
K=D/P1

FIG. 3. Contours of the dispersion relations for the differential case, the B and C grids, plotted for 4/d=0.35: (a) .04 o 240, interval 0.08; (b) 1.02 to
1.40, interval 0.02; (c) 1.02 to 1.40, interval 0.02.
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In Section 4 the dispersion relations for both B grid and
C grid are obtained. [t can be seen from {4.13)-(4.15) and
{4.16)-(4.18) that the Coriolis term f does not introduce any
dispersions when the B grid is employed. However, by com-
paring (4.13)-(4.15) and {4.19)-(4.21) we can see that the
Coriolis term does produce disperstons if the C grid is used.
This 1s due to the fact that in using the C grid the two
horizontal velocity components are computed at different
spatial points and the Coriolis terms in each momentum
equation are averaged over the four neighboring points.
This kind of average in the interior points will introduce dis-
persions. Moreover, when adjacent to a coast, one or more
of these four points will in fact lie on the coast and the
velocity components at such points are sel to zero in most
conventional algorithms. The four-point average will result
in incorrect values in the interior points, which leads to
spurtous velocity distributions near the coast [12].
However, if the B grid is used then the two horizontal
velocity components are compufed at the same spatial
peints and the Coriolis terms in each momentum equation
can be obtained simultaneously. It has been found that the
B grid does not produce spuricus velocities near the
coast {17, 24].

The 4 Jth eigeavalues in (4.13), (4.18), and (4.21) are the
most complicated dispersion relations and a detailed com-
parison will be given in the following. Figures 2 and 3 show
the contours of the dispersion relations for the differential
case and the B and C grids plotted for r=24/d=2 and 0.5,
respectively. It can be observed from Fig. 2 that in the case
of smali scale length {i.e., d < 1) both the B and C grids yield
good approximations for the semidiscrete dispersion rela-
tions of the differential equations when the wave numbers k
and / are small. When & and / are not close to the origin the
C grid gives a better approximation to the differential case
than the B grid. This suggests that in the case ¢ < 4 the C
grid is more appropriate than the B grid in comparison with
the first mode eigenvalues, w . ,. Further, it can be seen from
Fig. 3 that, if &> A, the dispersion relations for the C grid
do not lead to reasonable approximations for those of the
differential case, except when the wave numbers & and / are
very close to the origin. However, the B grid is found still to
be appropriate in approximating the dispersive relations of
the differential equations for quite large wave numbers.

5.2. Group Velocity Analysis

If the dispersion relation takes the form w = w(k, /), then
the group velocity is defined by

dw Jw
C =(~(?E, -6—1—)

This formula is readily established by a stationary phase
argument as in [20, 277. Most nontrivial phystcal problems

(5.1)

S81/105/1-6

in several dimensions will usually be modeled on a
regreitably coarse mesh, so group velocity errors will be
hardly avoidable. Further, because of the anisotropy of the
finite difference grid ttself, {5.1) will imply that coarsely
represented waves in two-dimensional difference models
travel, not only at the wrong speed, but also in the wrong
direction {see, e.g., [25]).

It has been observed from (4.13)-(4.15), {4.16}—(4.18),
and {4.19)-(4.21) that the last two eigenvalues, w . ,, are the
dominant terms among all of the eigenpairs. Now let =,

(a). =0 direction

40
30 4
1
20 4 —=o—— Differantial
—%—— Scheme B
1 —o— Schame C
10
0 T T L B | ¥
0.0 0.2 0.4 0.6 0.8 1.0
(b}. I=0.5"k direction
449
30 4
20 —a— Difierential
T —a— Scheme £
1 —o— SchemeC
10 4
0 P——r——r—r—————r———r—r
0.0 0.2 0.4 0.6 0.8 1.0
{c). 1=k direction
40
30 -
20 4 —a—— Differential
—#%— Scheme B
—o— Scheme C
10 -
1
0 v ————————
0.0 0.2 0.4 0.6 0.8 1.0

Wave number k*d/n

FI1G. 4. Group speed relations for the differential case, the B and C
grids, plotted for 4/{d=2and (a) f=0; (b) { = 0.5%; (c) { =K.
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and we shall consider the group velacities for the differential
case, the B and C grids related to this (dominant) eigen-
value {or, dispersion relation). From (4.15), (4.18), and
(4.21) we can obtain the governing equations for the group
velocity:

Differential case,

dwp  ghk dop  ghl

dk  w,’ al o, (3.2)
B grid,

6_&)_3 _ gh sin(kd) cos(ld)
ok o pd ’

: (5.3).
g_ug_ ghsin({d) cos(kd )
ol w gd ’
C grid,
dwo  ghsin{kd)(1 —o* cos?(Jdj2))
ok wed ’
. ) {5.4)
dwc  ghsin(ld)(1 - o® cos’(kdj2)}.
ot h UJCd !

where p =d/2i=1/2r and w,, wy, and w are the frequen-
cies for the differential case, the B grid, and the C grid,
respectively. Further, their group speeds (cf. [25]) have the
forms

|Cphi=gh IV kz"‘“lz/wa,

N sin’(kd) cos*(Id)
ICrl = gh \/ ( + sin(id) cosz(kd)) / (wad),

_ sin*(kd )[1 — ¢* cos (ld/2) T’
(Cel=~eh \/( +sinX(ld)[ 1 — ¢* cos"{kd/2)]2)/(wcd}'
(5.7)

(5.5)

{(5.6)

The corresponding group propagation angles (from the
Xx-axis) are

90=tan"~é, (58)
__,sin(/d) cos(kd)
Or=tan” o kd) cosid)’ (59)
: a2 p
0= tan"! sin(ld)[ 1 — p° cos(kd/2)] (5.10)

sin(kd)[ 1 — 0 cos*(id/2)]’

It can be seen from (5.5)-(5.10) that the velocity speeds and
angles are symmetric with respect to &, / and the lines

I= +k. Therefore we shall consider the first half-quarter of
(k, 1) space only, ie, I=nk with k20 and < [0,1]. To
compare the relations of {5.5)-(5.7) we plot the group
speeds for some selected directions by setting n =0, 0.5, and
1. Figures 4 and 5 show the group speeds in the cases
r=/A/d =72 and 0.5, respectiveiy. In the case that r =2 it can
be observed from Fig. 4 that the two discrete group speeds
approximate the continuous one quite accurately when &
and [ are small. Similar to our observations for the disper-
sion relation, the C grid is more appropriate than the B grid
when k and / are larger. In the case that r =0.5, it is observed
from Fig. 5a that the group speed of the C grid does not

(a). 1=0 direction

—a— Differemiial
—a— Scheme B
—e—  Schemea C

—a— Diflerential
—&— Scheme B
—e— Scheme C

0.0 0.2 a.4 0.6 .8 1.0

(c). 1=k direction

30

]
20

—8&— Diffarential
—a&— Schemg B
—&— Scheme C

10-1
]

Q LA | T T 1
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approximate the continuous solution event when /=0 and &k
is very small, Further, it can be obtained from (5.8)-{5.10)
that if /=0 then #,=0,=0,. However, if /20, then the
discrete group velocities do not travel in the exactly same
direction of the continuous one. To see this we consider the
case [=nk with 0 <n < 1. Figure 6 shows the contouts of
the tangents of the angles with (0, ) for the differential
solution (Fig. 6a) and the B grid solution (Fig. 6b). Also
shown are the C grid results for r=2, 1, 2, and 0.5 (Figs.
6c-f). Figure 6 suggests that the rehability of the C grid
decreases as r decreases. If r > 1 (i.e, d < i) then the C grid
gives more accurate approximation to ¢, than the B. grid
does. However, in the case ¥ < 1 more accurate results are
obtained by using the B grid. In practice, it is important that
numerical schemes should approximate the continuous
solutions of smalil wave numbers. However, Fig. 5 and 6
imply that when r=0.5 the C grid is not appropriate for
small values of wave number and is unlikely to produce
accurate numerical solutions in the practical calculations.

6. CONCLUSION

In this work we have investigated the B and C grids by
comparing their dispersion and group velocity relations. In
the conclusion we give a suramary of the points we have
raised in the present work. Ouce again:  is the spatial grid
size, / is the Rossby radius of deformation, &k and [ are wave
numbers in the x and y directions, respectively.

= Coriolis term fintroduces dispersions for the C grid but
not for the B grid.

« If the horizontal scale length is less than the Rossby
radius of deformation, ie., d< 4, then the C grid is more
appropriate than the B grid. The B grid is accurate only
when the wave numbers & and 7 are small.

» If the horizontal scale length is greater than the Rossby
radius of deformation, ie., d> 7, then the B grid is more
appropriate than the C grid. The C grid gives unreasonable
group velocity even when the wave numbers are very small.

It should be pointed out that Eqs. (3.4)-(3.6) are equiv-
alent to the linearized shallow-water equations. Since it is
(3.4)-(3.6) which yield the eigenvalues w, , (the frequencies
of the inertia—gravity modes for the shallow water equa-
tions), the analysis and the results in Section 5 are directly
applicable to the shallow-water equations.
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